CONTENTS

1. Introduction
 ...1–7

2. Kinematics of Motion
 ...8–23

3. Kinetics of Motion
 ...24–71
4. **Simple Harmonic Motion**

5. **Simple Mechanisms**

6. **Velocity in Mechanisms**

 (Instantaneous Centre Method)

7. **Velocity in Mechanisms**

 (Relative Velocity Method)

8. **Acceleration in Mechanisms**

9. **Mechanisms with Lower Pairs**

10. **Friction**

11. **Belt, Rope and Chain Drives**
 1. Introduction. 2. Selection of a Belt Drive. 3. Types of Belt Drives. 4. Types of Belts. 5. Material used for Belts. 6. Types of Flat Belt

12. **Toothed Gearing**

13. **Gear Trains**

1. Introduction. 2. Types of Gear Trains. 3. Simple Gear Train. 4. Compound Gear Train.

14. **Gyroscope Couple and Precessional Motion** ...480–513

15. **Inertia Forces in Reciprocating Parts** ...514–564

16. **Turning Moment Diagrams and Flywheel** ...565–611

17. **Steam Engine Valves and Reversing Gears**

18. **Governors**

19. **Brakes and Dynamometers**

20. Cams

21. Balancing of Rotating Masses

22. Balancing of Reciprocating Masses

23. Longitudinal and Transverse Vibrations

1. Introduction. 2. Terms Used in Vibratory Motion. 3. Types of Vibratory Motion. 4. Types of Free Vibrations. 5. Natural Frequency of Free Longitudinal Vibrations. 6. Natural Frequency of Free Transverse Vibrations. 7. Effect of Inertia of the Constraint in Longitudinal and Transverse Vibrations. 8. Natural Frequency of Free Transverse Vibrations Due to a Point Load Acting Over a Simply Supported Shaft. 9. Natural Frequency of Free Transverse Vibrations Due to Uniformly Distributed Load Over a Simply Supported Shaft.

24. **Torsional Vibrations**

25. **Computer Aided Analysis and Synthesis of Mechanisms**

26. **Automatic Control**

Index

(xii)